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Shape/topology optimization

Standard approaches

A toy example: Minimum compliance design1:

min
u∈U,E

l(u) =
∫

Ω
f>udΩ +

∫
Sσ

t>udS (1)

subject to

a(u, v) =
∫

Ω
Eijklε ijεkldΩ = l(v), ∀v ∈ U,

E ∈ Ead.
(2)

Solid Isotropic Material Penalization (SIMP)
Homogenization
Level set method

1MP Bendsøe and O Sigmund. Topology Optimization. Theory, Methods, and Applica-
tions. 2nd ed. Berlin Heidelberg: Springer-Verlag, 2004.
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Shape/topology optimization

Problem description
1.1 Problem formulation and parametrization of design 3 

A de ign point 

a) 

A point wi th no material 

t 
b) c) 

Fig. 1.2. a) The generalized shape design problem of finding the optimal material 
distribution in a two-dimensional domain. b) Example rectangular design domain 
and c) topology optimized solution based on a 3200 element discretization and 50% 
material volume. 

of finding the optimal choice of stiffness tensor E ijk1 (x) 1 which is a variable 
over the domain. Introducing the energy bilinear form (Le., the internal vir-
tual work of an elastic body at the equilibrium U and for an arbitrary virtual 
displacement v): 

a(u,v) = In Eijkl(X)cij(U)ckl(V)dD. , 

with linearized strains Cij(U) = + and the load linear form 

l(u) = r JudD. + r tuds, 10 1rT 
the minimum compliance (maximum global stiffness) problem takes the form 

min l(u) 
uEU,E 

s.t. : aE(u, v) = l(v), for all v E U , 

E E Ead . 
-----

(1.1) 

1 In what follows we use a standard tensor notation consistent with a Cartesian 
reference frame; this does not imply a loss of generality. 

Figure: A minimum compliance problem. Reprinted from [1].
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Shape/topology optimization

Discrete formulation

min
uh,Ee

f>uh (3)

such that
∑ Ke(Ee)uh = f,

Ee = 1Ω∗E0,∫
Ω

1Ω∗dΩ ≤ V.

(4)

This integer programming problem is very hard to solve.
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Shape/topology optimization

SIMP

E(x) = ρ(x)pE0, with p > 1, (5)

subject to

ρ(x) ∈ [0, 1] and
∫

Ω
ρdΩ ≤ V. (6)

For large p, e.g. p ≥ 3 in 2D, the existence of a global 0-1 solution (to the
discrete problem) was proved under mild assumptions2. The exponent
p can also be regarded as a “real” material parameter.

Optimality criteria? Sensitivity analysis? Can the discrete solution well
approximate the continuous solution?

2A Rietz. “Sufficiency of a finite exponent in SIMP (power law) methods”. Structural
and Multidisciplinary Optimization 21 (2001), 159–163.
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Shape/topology optimization

Issues of SIMP I

Mesh-dependent solutions & Checkerboard pattern
30 1 Topology optimization by distribution of isotropic material 

to§iWSM%<X 

Fig. 1.15. Dependence of the optimal topology on mesh refinement for the MBB-
beam example. Solution for a discretization with a) 2700, c) 4800 and d) 17200 
elements. 

tinuum setting9 . The reason is that the introduction of more holes, without 
changing the structural volume, will generally increase the efficiency of a 
given structure. In the limit of this process one obtains structural variations 
in the form of microstructures that have an improved use of the material. 
Such microstructures are typically not isotropic and cannot be represented 
within the original design description of only isotropic material; one says that 
there is a lack of closedness of the admissible set of designs. In computational 
implementations this effect is seen as a numerical instability where a larger 
number of holes appear when a finer finite element mesh is employed. That 
is, refining the finite element mesh for the reference domain ultimately leads 
to a generation of a fine-scale internal structural lay-out similar in nature to 
the microstructures that theory predicts. Thus the non-existence of solutions 
is indeed a problem for the numerical solutions of the topology optimization 
problem. This dependence of the solutions on mesh-refinement is illustrated 
in figure 1.15, where an improved finite element discretization results in a 
much more detailed structure. Ideally, mesh-refinement should result in a 
better finite element modelling of the same optimal structure and a better 
description of boundaries - not in a nlore detailed and qualitatively different 
structure. As we shall show, there are actually efficient and uncomplicated 
ways to achieve mesh-independent procedures for obtaining 0-1 designs, so 
there is no reason to accept results that are inherently mesh-dependent. 

The approach to generate macroscopic and mesh-independent 0-1 solu-
tions is to reduce the space of admissible designs by some sort of global 
or local restriction on the variation of density, thus effectively ruling out 
the possibility for fine scale structures to formate. The techniques that have 
been suggested for enforcing such a restriction fall into three generic classes 
of methods. These consists of either adding constraints to the optimization 
problem, reducing directly the parameter space for the designs, or applying 
filters in the optimization implementation. For most of these methods, exis-

9 In any discretized version of the 0-1 problem, existence is trivial, as one has a 
design space with finitely many different design options. 

Figure: Mesh-dependent solutions of a three-point bending problem.
Reprinted from [1].
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Shape/topology optimization

Issues of SIMP II
1.3 Complications 

J 
I 

I 
39 

Fig. 1.18. The checkerboard problem demonstrated on a long cantilever beam. a) 
Design problem, b) solution for 400 element discretization and c) solution for 6400 
element discretization. 

analysis grid. The geometric resolution cannot be improved beyond what is 
contained in the initial design description. 

1.3.2 The checkerboard problem 

Patches of checkerboard patterns appear often in solutions obtained by a 
direct implementation of the material distribution method that use the dis-
placement based finite element method, cf., figure 1.18. Within a checker-
board patch of the structure the density of the material assigned to contiguous 
finite elements varies in a periodic fashion similar to a checkerboard consist-
ing of alternating solid and void elements. Such patterns are also observed 
in the spatial distribution of the pressure in some finite element analyses of 
Stokes flows. It is now well understood that also for topology design the ori-
gin of the checkerboard patterns is related to features of the finite element 
approximation, and more specifically is due to bad numerical modelling that 
overestimates the stiffness of checkerboards [9]. 

The restriction methods already described also has the effect that checker-
boarding is reduced or removed. The reason for this is that when one enforces 
a constraint on geometry (generally speaking in terms of the length of the 
boundary or in terms of gradient variation) that assure that solutions exist, 
one also obtains FE-convergence and checkerboards cannot be present for a 
fine enough mesh (more precisely, they can be made arbitrarily weak). 

There are situations where one does not wish to enforce a fixed scale ge-
ometric restriction on the designs. This is the case when one uses numerical 
methods to obtain an understanding of the behaviour of optimal topologies at 

Figure: The checkerboard problem. Reprinted from [1].

Solutions: Constraining the gradient of ρ. Adding filters.
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Shape/topology optimization

Homogenization

Shape/topology optimization ≈ Finding the optimal composite (com-
posed of void and the original material)

160 3 Design with anisotropic materials 

micro lruClllre 

Fig. 3.1. A structure made of materials with micro structure. Notice how the micro 
structure is rotated by a rotation of the unit cells. 

3.1 The homogenization approach 

3.1.1 Parametrization of design 

We have already noted that the original 0-1 problem statement of topology 
design lacks existence of solutions in the continuum setting (the distributed 
problem) [34), [25]. We have hitherto used a restriction method to assure 
existence of solutions. On the other hand, existence studies shows that non-
convergent, minimizing sequences of admissible designs with finer and finer 
geometrical details that can be found for the original "0-1" problem and that 
these limits should be interpreted as designs where composites made from 
the original material (and void) are integral parts of the optimal structure. 

If we decide to work with an extension of the design space, the key to 
assuring the existence of solutions to our basic shape optimization problem 
with unknown topology is thus the introduction of composite materials con-
structed from the given isotropic material (as defined by EPjkl of (1.3)) [4), 
[5), [34], [25). The design variable is then the continuous density of the base 
material in these composites. We immediately note that such a relaxation of 
the problem in itself provides an interpolation for use in computations, as 
the composites allows for a density of material, i.e., a definition of "grey". 
Introducing a composite material consisting of an infinite number of infinitely 
small holes periodically distributed through the base material, the topology 
problem is consequently transformed to the form of a sizing problem where 
the sizing variable is the material density p. As in SIMP, the on-off nature of 
the problem is avoided through the introduction of this density, with p = 0 
corresponding to a void, p = 1 to material and 0 < p < 1 to the porous 
composite with voids at a micro level. We thus in this situation have a set of 
admissible Ead stiffness tensors given in the form: 

Figure: Material with microstructure. Reprinted from [1].

Junbin Huang (Peking University) Optimal Design May 19, 2021 9 / 34



Shape/topology optimization

Homogenization formulation

The structure is made of (infinitely many) periodically distributed (in-
finitely small) cells (with size δ). What happens if δ→ 0?

We again minimize the compliance subject to:
a(u, v) = l(v), ∀v ∈ U,
geometric variables µ, γ, · · · ∈ L∞(Ω), angles θ ∈ L∞(Ω),
E = Ẽ(µ, γ, . . . , θ),
density ρ is a function of these parameters,
and

∫
Ω ρ(x) ≤ V with 0 ≤ ρ ≤ 1.

How to enforce 0-1 solution? (Penalization)
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Shape/topology optimization

Level set method

Represent the shape using a level set function φ, and explicitly using
the shape sensitivity to perform gradient descent3.
Define a perturbed domain by Ω∗θ = (Id + θ)(Ω∗), where θ is a small
vector field.
Denote J(Ω∗) the objective function. It can be shown

J′(Ω∗)(θ) =
∫

∂Ω∗
v(J)θ · ndΩ. (7)

Now θ = −vn is a descending direction. The level set function is up-
dated by

∂φ

∂t
− v‖∇φ‖ = 0. (8)

3G Allaire, F Jouve, and AM Toader. “Structural optimization using sensitivity anal-
ysis and a level-set method”. Journal of Computational Physics 194.1 (2004), 363–393.
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Shape/topology optimization

Machine learning–based approaches I

Topology optimization of 2D nonlinear structures4.

“HPC cluster” at National Center for Supercomputing Applications
(NCSA) + “Commercial FEA software ABAQUS” + “SIMP” + “Simple
CNN”.

Direct learning of the optimal configuration given loading and con-
straints. 15000 data generated at a speed of 0.31 min/data point (linear)
or 3.2 min/data point (nonlinear, and with 10 parallel instances).

4DW Abueidda, S Koric, and NA Sobh. “Topology optimization of 2D structures
with nonlinearities using deep learning”. Computers & Structures 237 (2020), 106283.
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Shape/topology optimization

Machine learning–based approaches I

3.2. Nonlinear stress constraint

The data used to train the stress-based topology optimization
CNN model are generated using an in-house MATLAB code. The
considered design space has a dimension of 1 m! 1 m, where
the design space has been discretized into 50! 50 elements. The
base material for the structure is the same as the one discussed
in Section 2.2. Unlike the case of linear elasticity without stress
constraint, the magnitude of the force affects the optimized design
due to the incorporation of the stress constraint. Also, we take into
consideration the effect of the filter radius. Five parameters have
been varied: (1) the location of the applied force, which node at
the right-hand side of the design space has the load applied, (2)
the magnitude of the load applied P 2 0; Pmax ¼ 1MN½ $, (3) the
angle of the applied force h 2 0; 2p½ $ð Þ; (4) the volume constraint
Vf 2 0:2; 0:8½ $
! "

, and the filter radius rmin 2 3 cm; 10 cm½ $ð Þ. Like
the previous two cases, the varied parameters are randomly
selected using a uniform distribution. The convergence condition
for determining the size of the dataset is to achieve a DSC higher
than 0.95. Twenty thousand data points had been generated to
train and test the developed CNN model.

Then, we arrange the generated data into a form suitable for the
CNN model. The design space has 50! 50 elements and 51! 51
nodes. The six channels are: (1) ux with a dimension of 51! 51,
(2) uy with a dimension of 51! 51, (3) Px with a dimension of
51! 51, (4) Py with a dimension of 51! 51, (5) Vf with a dimen-
sion of 50! 50, and (6) rmin with a dimension of 50! 50. The first
five channels are created using the same approach utilized in cre-
ating the input channels in the case of the neo-Hookean material
discussed in Section 3.1. In addition to these five channels, we have
an extra channel accounting for the filter radius, where all pixels in
this channel are assigned a uniform value rmin. The output of each
data is composed of one channel, where the pixels have values
equal to the densities obtained from the optimization framework.

Although one can arrange the data (channels) for the three sce-
narios we have considered (linear elasticity with and without

stress constraint and large-deformation hyperelasticity) in other
ways, we stick with this approach as it makes clear how one can
generalize the CNN model, so it accounts for scenarios where the
prescribed displacements and forces can be on different edges.
Also, the adopted CNN model [40] requires the inputs and outputs
to have a size of 2m ! 2m, wherem is a positive integer. Hence, pad-
ding is done, so all the channels (inputs and outputs) have a size of
64! 64 pixels. For all cases (linear elasticity with and without
stress constraint and hyperelasticity), the images can be cropped
to remove the padding and retrieve the original size of each
problem.

4. ResUnet

4.1. ResUnet architecture

The primary objective of this paper is to develop deep CNN
models to solve topology optimization problems. The adopted
CNN model is based on the ResUnet proposed by Zhang et al.
[40]. The ResUnet is a semantic segmentation convolutional neural
network combining the privileges of the U-net and residual learn-
ing to improve the performance of U-net further. U-net was

Fig. 6. Flowchart showing the different steps used to develop a CNN-based optimizer.
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CPU GPU
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Fig. 7. Demonstration of training time for the linear case when CPU-only iForge
node with Skylake cores and a single GPU are used.

8 D.W. Abueidda et al. / Computers and Structures 237 (2020) 106283

Figure: A training flowchart. Reprinted from [4].
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Shape/topology optimization

Machine learning–based approaches I

initially proposed by Ronneberger et al. [93]. U-net concatenates
feature maps from different levels to improve segmentation accu-
racy. In other words, U-net combines low-level detail information
and high-level semantic information to enhance segmentation
accuracy. This concatenation of feature maps from different levels
is not utilized in the CNN model developed by Yu et al. [71].

Generally, deeper neural networks can help get models with
better performance [94]. However, very deep neural networks
encounter problems such as vanishing gradients. He et al. [95] pre-
sented a deep residual learning framework to facilitate the training
of very deep networks. The primary difference between the
employed ResUnet [40] and conventional U-net [93] is the use of
residual units instead of plain neural units as building blocks for
the developed network. Fig. 5a and Fig. 5b portray the building
blocks used in the U-net and ResUnet, respectively. A residual unit
is a combination of batch normalizations (BN), rectified linear units
(ReLU), and convolutional layers (Conv).

Fig. 5c depicts the architecture of the ResUnet. The ResUnet is
composed of three components: (1) encoder, encodes input images
into compact representation, (2) decoder, retrieves the encoded
representations to a pixel-wise categorization (semantic segmen-
tation), and (3) bridge, connects the encoder and decoder. The skip
connections between the encoder and decoder and within the
residual units ease information propagations in forward and back-
ward directions and reduce the number of parameters needed. The
reader is referred to the paper by Zhang et al. [40] for a more in-
depth discussion about the network. It is worth highlighting that
we have added one residual block to the encoder and its corre-
sponding block to the decoder, as the original ResUnet architecture
suggested in the paper is not deep enough to predict the optimized
designs for the nonlinear case, and it is sufficient for the elastic
case. To have a unified framework, we used the same number of
residual blocks for the linear and nonlinear cases, although the lin-
ear case does not require any modification to the original
architecture.

4.2. Loss function and model evaluation

We developed three ResUnet networks, one for the small-
deformation linear elastic material with and without a nonlinear
constraint and one for the neo-Hookean material with nonlineari-
ties. The models were developed and tested using Keras [96]. Also,
we utilize mini-batching to increase the convergence rate and
assist the CNN models to escape from local minima [97]. The same

Fig. 8. The convergence history of the loss function for the CNN model developed
for the case of (a) linear elasticity with small deformation and (b) geometric and
material nonlinearities.

Fig. 9. The convergence history of the DSC for the CNN model developed for the
case of (a) linear elasticity with small deformation and (b) geometric and material
nonlinearities.

Fig. 10. Comparison between optimized designs for the case of linear elasticity
with small deformation. The design space has a dimension of 1 m! 1 m.

D.W. Abueidda et al. / Computers and Structures 237 (2020) 106283 9

Figure: Performance of the CNN optimizer. Reprinted from [4].

Junbin Huang (Peking University) Optimal Design May 19, 2021 14 / 34



Shape/topology optimization

Machine learning–based approaches II

Aerodynamic design optimization (max lift-to-drag ratio) using GANs5.

“Dimensionality reduction infoGANs” + “Real shape data UIUC airfoil
database” + “Interactive solver XFOIL” + “Mixed optimization”.

5W Chen, K Chiu, and M Fuge. “Aerodynamic design optimization and shape ex-
ploration using generative adversarial networks”. In: AIAA Scitech 2019 Forum. San
Diego, California: AIAA, 2019.
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Shape/topology optimization

Machine learning–based approaches II

IV. Spline-Based Shape Synthesis
Typical approaches to generative shape models (such as GANs) represent shapes as a collection of discrete samples

(e.g., as pixels or voxels) owing to the their original development in the computer vision community. For example,
a naïve way of synthesizing shapes like airfoils would be to generate this discrete representation directly using the
generator, such as generating a fixed number of coordinates sampled along the airfoils boundary curve (e.g., Fig. 2,
right). However, in practice, airfoils typically possess substantial smoothness/continuity and are typically represented
using parametric curve families like splines, Bézier curves, or NURBS surfaces. The naïve GAN representation of
predicting discretized curves from the generator usually (1) creates noisy curves that have low smoothness and (2) have
parametric output that is harder for humans to interpret and use in standard CAD packages compared to equivalent
curve representations (e.g., Bézier curves). This creates problems, particularly in aerodynamic shape synthesis.

To solve this issue, we modified the InfoGAN’s generator such that it only generates smooth shapes that conform
to Bézier curves. We call this generative adversarial network a Bézier-GAN [19]. As shown in Fig. 1, most of its
architecture is adapted from the InfoGAN. However, before outputting discrete coordinates along the curve, the generator
synthesizes control points P, weights w, and parameter variables t of rational Bézier curves. The last layer—the Bézier
layer—converts this rational Bézier curve representation into discrete representation X:

Xj =

Õn
i=0

�n
i

�
tij(1 � tj)n�iPiwiÕn

i=0
�n
i

�
tij(1 � tj)n�iwi

, j = 0, ...,m (2)

where n is the Bézier degree, and the number of discrete points to represent the curve is m + 1. Since variables
{Pi}, {wi}, and {tj} are di�erentiable in Eq. 2, we can train the network using back propagation. Figure 2 compares
synthesized shapes with and without using a Bézier layer.

Fully 
connected 

layers

Deconvolutional 
layers

Latent codes

Noise

Control points

Weights

Parameter
variables

Bezier 
layer

Convolutional 
layers

Real/Fake

Latent codes

Generator
Discriminator

Fully 
connected 

layers

Synthesized

Samples from 
dataset

Fig. 1 Model architecture of the Bézier-GAN.

Use a Bézier layer Not use a Bézier layer

Fig. 2 Synthesized airfoils using a generator with and without a Bézier layer.

V. Optimization over the Learned Latent Space

A. The Optimization Problem in the Latent Space
The optimal aerodynamic shape can be solved by x⇤ = arg minx f (x), where x is an aerodynamic shape (expressed

in this case by the latent codes and the Bézier curve parameters) and f (x) is some performance measure defined over
x (e.g., lift, drag, etc.). Since the function f is usually non-convex, methods such as EA or SBO are often used for
optimization [57–60]. These methods search for the global optimum by exploring the design space X. However, since
X is usually high-dimensional, it takes many performance evaluations to find the optimal solution due to the curse of

4

Figure: The infoGAN for dimensionality reduction. Reprinted from [5].
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Shape/topology optimization

Machine learning–based approaches II
Fig. 3 Unbounded sampling in Bayesian optimization.

c c c

c1

c2

c1

c2

c1

c2

Fig. 4 Examples in the airfoil database and synthesized airfoil shapes in three-dimensional latent spaces
(visualized by uniform slices of multiple two-dimensional spaces).

B. Dimensionality Reduction
We build a Bézier-GAN model based on the architecture in Fig. 1. The latent codes are from a three-dimensional

uniform distribution, and the input noise is from a ten-dimensional Gaussian distribution. In the discriminator, we use
six one-dimensional convolutional layers followed by fully connected layers to predict latent codes and the probability of
the input data coming from the dataset. For the generator, we use three one-dimensional deconvolutional layers [65] to
predict the control points {Pi |i = 0, ..., n} and the weights {wi |i = 0, ..., n}, and three fully connected layers followed by
a softmax activation to predict discrete di�erences between parameter variables {tj+1 � tj | j = 0, ...,m � 1}. Interested
readers can refer to detailed network architectures and hyperparameters in our Tensorflow implementation available on

6

Figure: The latent space of infoGAN. Reprinted from [5].
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Shape/topology optimization

Machine learning–based approaches II

Fig. 6 Optimal airfoils (airfoils in the same subplot are under the same experimental configuration but di�erent
runs).

Table 1 Values of CL/CD for optimal solutions.

# Eval. BézierGAN+EGO PCA+EGO NURBS+EGO NURBS+GA PARSEC+EGO PARSEC+GA

100 195.41 ± 2.94 149.86 ± 13.46 122.75 ± 20.41 64.97 ± 4.82 26.44 ± 3.88 24.11 ± 0.90
1000 200.80 ± 2.12 181.86 ± 21.87 197.37 ± 3.22 142.35 ± 20.38 27.26 ± 4.07 53.77 ± 3.24

D. GA Refining
Figure 5 shows that when using Bézier-GAN, the optimal CL/CD stops improving after 100 evaluations, whereas the

optimal CL/CD improves continuously, though slowly, when using the NURBS parameterization. This is because the
three-dimensional latent space does not contain as much shape variation as the NURBS design space. However, while
the three-dimensional latent space captures major shape variations, minor shape variations are captured by the noise
space (i.e., the space of the random input noise of Bézier-GAN). Therefore, we can further search for an improvement in
that noise space. We achieve this by using the optimal solution of EGO after 100 evaluations as the initial design and
run GAs in both the latent space and the noise space. We call this GA refining. Specifically, we allow larger shape
variation on the noise variables while limiting the variation on the latent variables during mutation. The results are
shown in Figs. 7 and 8. In this way, the optimal CL/CD keeps improving even after the latent space is exploited.

Fig. 7 Optimization history for BézierGAN+EGO with and without GA refining.

VII. Discussion and Conclusion
We use a Bézier-GAN to capture a low-dimensional latent space that encodes major shape variability of aerodynamic

designs. Design optimization can then be conducted in this latent space to reduce the number of evaluations required to

8

Figure: Performance of the mixed optimization approach. Reprinted from [5].
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Composite materials and structures

Tasks

Predicting the properties of a given composite.
Simple assumptions. (inaccurate)
Curve fitting based on experimental measurements or numerical
simulations. (1D)
. . .

Multiscale modeling.
Optimal design.
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Composite materials and structures

Constitutive models

Simple models: linear elasticity, perfect plasticity, ... (1D)
Mass conservation + momentum conservation + energy conser-
vation + Entropy imbalance + frame-indifference. (3D theoretical
models)
Real materials???

Use CNN or RNN to learn from real data. How to obtain {(ε i, σi)} from
experimental tests? How to learn 3D constitutive models? How to use
such trained models with FEA? Efficiency?
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Composite materials and structures

Multiscale modeling

Representative volume element6 forms the basis for many multiscale
analysis methods7, in which the local mechanical properties of a com-
posite structure are approximated by the response of a representative
micro structure.

Fig. 5 General framework of data-driven multiscale modeling

(e.g., fiber-reinforced composite, amorphous material, and woven composite). They also incorporated the manufacturing
process into the models. Sun and his co-workers [68–71] utilized advanced ANN models (e.g., RNN and deep reinforced
learning (DRL)) to develop di�erent surrogate models for multiscale modeling of multi-porosity materials. The cohesive
laws were generated using a deep RNN model based on an o�ine homogenization procedure, which was proven to be
much more computational e�cient than FE2 approach [68]. The DRL was employed to construct surrogate models
for the traction-separation law [69] and elasto-plasticity model [70]. In addition to the standard ANN models, Liu
and his co-workers [72–75] developed a deep material network for multiscale modeling of heterogeneous materials.
This method has been used to construct surrogate models for history-dependent plasticity, finite strain hyperelasticity,
and interfacial failure analysis. Recently, Liu et al. [76] extended this approach to develop an integrated framework
for process modeling, material homogenization, machine learning, and multiscale simulation. Other researchers
also applied di�erent machine learning models to construct surrogate models to capture di�erent nonlinear material
behaviors such as elasto-plasticity [77–79], finite deformation hyperelasticity [80–83] and viscoplasticity [84]. In
addition to directly approximating multiscale modeling of composites, machine learning models have also been used to
accelerate the expensive computations in FE models [85, 86], which reduces the computing costs in many FE-based
multiscale models. Note that ANN models are also employed in the homogenization of other physical behaviors such
as electrical response [63] and thermal conductivity [87, 88]. Table 3 lists some homogenized constitutive behaviors
approximated by di�erent ANN models based on the data from simulations. Many ANN models have been developed
for hyperelasticity constitutive behaviors due to the lower input and output dimensions (e.g., strains and elastic energy).
Recently, much research interest has been focused on modeling the path/history-dependent behavior, which usually
deals with high-dimensional input and output that may be better approximated by more advanced ANN models such as
CNN, RNN or a mixed CNN-RNN model [89].

Table 3 Di�erent nonlinear constitutive laws approximated by ANN models

Nonlinear constitutive ANN models
elastoplastic feed-forward ANN [59, 60, 90, 91], RNN [79, 92], DRL [69]
viscoplastic feed-forward ANN [93, 94], RNN [95], CNN [96]

hyperelasticity feed-forward ANN [62, 71, 80, 82, 97]
damage feed-forward ANN [98, 99]

traction-separation feed-forward ANN [100], DRL [69]

8

Figure: Micro structure at a material point. Reprinted from [7].

6CT Sun and RS Vaidya. “Prediction of composite properties from a representative
volume element”. Composites Science and Technology 56.2 (1996), 171–179.

7X Liu et al. How machine learning can help the design and analysis of composite materials
and structures? 2020. arXiv: 2010.09438 [cond-mat.mtrl-sci].
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boundaries of the RVE under transverse shear loading 
can distort while still exhibiting a periodic displace- 
ment field. Zhang and Evans” modeled longitudinal 
shear loading in a composite cylinder model assuming 
a constant shear strain for both the fiber and the 
matrix. This assumption is incorrect, since the fiber 
and matrix with different elastic moduli should have 
different shear strains. Adams and Crane” used the 
correct boundary conditions to model longitudinal 
shear loading. In order to do so, however, they had to 
develop their own two-dimensional finite element 
model with a special strain-displacement relationship. 

2 REPRESENTATIVE VOLUME ELEMENT 

(RVE) 

In a composite lamina the actual fiber distribution is 
quite random across the cross-section. For simplicity 
reasons, most micromechanical models assume a 
periodic arrangement of fibers for which a RVE or 
unit cell can be isolated. The RVE has the same 
elastic constants and fiber volume fraction as the 
composite. The periodic fiber sequences commonly 
used are the square array and the hexagonal array. 
The corresponding RVE are shown in Fig. 1. 

Another important issue that has not been 
addressed in any of the literature reviewed is the 
relationship between the actual non-homogeneous 
stress and strain fields within the RVE and the 
‘average’ stress and strain for the composite. The 
relationship between the two and the procedure for 
determining the ‘average’ quantities are discussed here. 

In the present paper, the procedure for predicting 
the elastic constants of the composite from the RVE is 
laid on a rigorous mechanics foundation by using 
strain energy equivalence principles in conjunction 
with three-dimensional finite element analysis. The 
method works as follows. First, the appropriate 
boundary conditions for a typical RVE under different 
loading are determined and applied to the finite 
element model. The non-homogeneous strain fields 
obtained from the analysis are reduced to a 
volume-averaged strain by using Gauss theorem to 
integrate the surface displacements. The average 
stress is then determined by using the strain energy 
equivalence principle to relate the energy stored in the 
RVE to the external work done on it. The relevant 
composite modulus is then obtained as the ratio of the 
average stress to the average strain. 

When modeling composites using a RVE it is 
important to look closely at how it deforms when a 
uniform tensile or shear load is applied at the 
boundary of the composite. In a homogeneous 
material a uniform stress and strain state will exist 
under uniform loading, but such is not the case in a 
composite which is composed of fibers and matrix with 
vastly different properties. However, since all the 
RVEs are identical, they should exhibit identical stress 
and strain fields. Thus, from a global perspective, the 
stress and strain fields will be periodic in nature, 
except in a narrow boundary layer where the external 
load is applied. These periodicity constraints are used 
to determine the appropriate displacement constraints 
at the boundary of the RVE. 

In classical lamination theory the composite lamina 
is modeled as a homogeneous orthotropic medium 
with certain effective moduli that describe the 
‘average’ material properties of the composite. To 
describe this macroscopically homogeneous medium, 
macro-stress and macro-strain are derived by averag- 
ing the stress and strain tensor over the volume of the 
RVE: 

The elastic constants obtained from the analysis are 
compared with predictions of several micromechanical 
theories and with available experimental data. This 
procedure can also be extended to describe non-linear 
response of composites by modeling the matrix as an 
elastic-plastic material. 

and 

The equivalence between the actual heterogeneous 
composite medium and the homogeneous medium 

(1) 

fiber 

Square Array Hexagonal Array 
Fig. 1. RVE for square and hexagonal array configurations. 

Figure: Two typical representative volume elements. Reprinted from [6].

σij =
1
V

∫
V

σijdV, εij =
1
V

∫
V

ε ijdV,

σij = Eijklεkl .
(9)

Computational cost: O(NquadNeleNiter) FE simulations. Directly model-
ing the mapping f (input) = output can dramatically reduce the cost.
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Composite materials and structures

Design a composite structure

Without NN-based surrogate models, design of a composite structure
typically requires numerous sequential analyses of the parameterized
problem8.

[8,9]. Negendra et al. [10] proposed a minimum weight
optimisation of composite stiffened shells based on an
improved GA and a finite strip method implemented in
the PASCO program to evaluate both buckling load and
strain constraints. More recently, Kaletta and Wolf [11]
applied a parallel computing GA, considering buckling
and maximum strength constraints, to stiffened com-
posite plate panels. The fitness evaluation was per-
formed using directly eigenvalue finite element analyses.
Lillico et al. [12] considered constraints on the buckling
load and also on the post-buckling maximum strength
during a minimum weight optimisation involving alu-
minium alloy stiffened panels using VICONOPT. The
results obtained by VICONOPT were then verified using
ABAQUS.

The objective of this work is the definition of a fast
optimisation procedure for the design of stiffened com-
posite panels able to work in the post-buckling field. The
optimised structures are then characterised by a local
skin buckling between the stiffeners and by a high ratio
between the collapse load and the buckling load. The
need to consider the post-buckling field directly in
the optimisation procedure and in the definition of the
constraints suggests the use of non-linear finite element
analyses. Unfortunately, the definition of an optimisa-
tion procedure using directly genetic algorithm and non-
linear finite element analyses results too expensive from
a computational point of view. To overcome these dif-
ficulties an optimisation procedure based on a global
approximation strategy is developed, where the struc-
ture response is approximated by a system of neural
networks trained by means of non-linear finite element
analyses.

2. Panel description

The optimisation procedure is applied to low curva-
ture stiffened panels (Fig. 1) made of carbon fiber rein-
forced plastic (CFRP) woven and designed for
compression loads. The skin of the panels has internal
curvature radius of 1500 mm, arch-length of 706 mm

and height of 700 mm. The stiffeners are L-shaped with
equal sides and their corners are rounded with a mean
radius of 4 mm for construction reasons. They are cured
on the internal side of the skin and they are as long as
the panel and equally spaced. The minimum and maxi-
mum distances between the blades of two contiguous
stiffeners varies from 134 to 342 mm. To avoid local
buckling along the free lateral edges, the first and the
last stiffeners are placed in correspondence of the lateral
edges.

In many practical problems, the orientation angles in
the lay-up are limited to a small range of possibilities:
0!, 90! and !45!, where 0! is assumed as the direction
parallel to the stiffeners. The lay-up of the panel skin
consists of an upper exterior layer and a lower exterior
layer, both oriented at 0!, and of internal layers whose
number changes from 1 to 4. The following lay-up se-
quences are considered for the internal layers: [45!]; [45!/
45!]; [45!/)45!/45!]; [45!/)45!/)45!/45!]. Instead, the
lay-up of the stiffeners consists of a variable number of
layers oriented alternatively at 0! and 90!. The me-
chanical properties of the single ply are reported in
Table 1.

3. Formulation of the optimisation problem

The goal of the optimisation is to find the minimum
weight panel subject to post-buckling constraints. The
panel weight W is a function of the number of internal
layers at !45! in the skin (X1), the number of layers in
the stiffeners (X2), the side dimension of the stiffeners
(X3) and their number (X4). The optimisation domain is
reported in Table 2.

Thus, the panel weight can be calculated as

Table 1
Material properties of the CFRP ply

Young’s modulus E11 (N/mm2) 58615
Young’s modulus E22 (N/mm2) 58615
Shear modulus G12 (N/mm2) 3064
Poisson’s ratio m12 0.048
Density q (kg/m3) 1510
Ply thickness t (mm) 0.33
Tensile strength r11 ¼ r22 (N/mm2) 440
Compression strength r11 ¼ r22 (N/mm2) 468
Shear strength r12 (N/mm2) 99

Table 2
Optimisation domain

Description Minimum
value

Maximum
value

Number of layers at !45! in the skin X1 1 4
Number of layers in the stiffeners X2 4 12
Side dimension of the stiffeners (mm) X3 22 35
Number of stiffeners X4 3 6

Fig. 1. Low curvature stiffened panel under compression (dimensions
in mm).

238 C. Bisagni, L. Lanzi / Composite Structures 58 (2002) 237–247

Figure: Composite stiffened panel. Reprinted from [8].

8C Bisagni and L Lanzi. “Post-buckling optimisation of composite stiffened panels
using neural networks”. Composite Structures 58.2 (2002), 237–247.
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Details of the training process

Learned mapping: design parameters→ loading-displacement curve.
Optimization method: Genetic algorithm.
Dataset: 70 eigenvalue analyses and 55 dynamic analyses (took about
660 hours on a parallel machine).
Training + optimization time: about the cost of a single FE simulation.
Direct optimization took near 9480 hours.
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Design in photonics

Tasks

Forward design: Given a sub-scale structure, compute the optical
response by solving Maxwell’s equations. (easy)
Inverse design: Find a proper structure that yields the desired
response. (challenging) Traditional optimization approaches
require solving the forward problems many times in a sequence.

Structure topology optimization ≈ inverse design in photonics.

Two NN-based approaches: Training a surrogate model to approximate
the forward calculation, or directly learning the inverse mapping using
NNs9,10.

9W Ma et al. “Deep learning for the design of photonic structures”. Nature Photonics
5 (2021), 77–90.

10PR Wiecha et al. “Deep learning in nano-photonics: inverse design and beyond”.
Photonics Research 9.5 (2021), B182–B200.
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Design in photonics

The one to many issue

The inverse design problem usually has multiple solutions. An exam-
ple is given below11.

Page 1 of 16 
 

Supplementary material for  

Probabilistic representation and inverse design of 

metamaterials based on a deep generative model with 

semi-supervised learning strategy 

 

1.  Illustration of one-to-many issue in inverse design of metamaterial  

 
Figure S1. An example of two distinct designs with almost identical optical response: a ring 
resonator (a) and a cross resonator (b). 

 As mentioned in the manuscript, most previous works treat metamaterial design 

as a bidirectional one-to-one mapping with a regression model. However, this 

modeling method is inconsistent with physical intuitions. An example can be easily 

constructed in Figure S1. Two very different designs, a ring resonator (edge length 

720 nm, edge width 290 nm) and a cross resonator (arm length 1000 nm, arm width 

300 nm), have almost identical reflection spectra. If we would like to build up a 

model as a function to link metamaterial designs and optical responses, the forward 

prediction from designs to spectra is deterministic and can be accurately 

Figure: Two designs with the same response. Reprinted from the supplemen-
tal material of [11].

11W Ma et al. “Probabilistic representation and inverse design of metamaterials
based on a deep generative model with semi-supervised learning strategy”. Advanced
Materials 31.35 (2019), 1901111.
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Design in photonics

How to learn a one-to-many mapping?

Naive FCNN can only learn an averaged mapping. (large error)

Solutions:
Tandem training method.
Dimensionality reduction using autoencoders12.
Conditional GANs and VAEs.

12Y Kiarashinejad, S Abdollahramezani, and A Adibi. “Deep learning approach
based on dimensionality reduction for designing electromagnetic nanostructures”. npj
Computational Materials 6.12 (2020), 1–12.
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Design in photonics

A VAE example I

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1901111 (3 of 9)
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the forward prediction of reflection spectra of metamaterial 
with given geometric pattern, and generation model for the 
inverse design process of metamaterial given required spectra. 
The detailed mathematical formulation of the deep generative 
model and loss objective for training can be found in Sections 2 
and 3 of the Supporting Information.

To realize the deep generative model that provides a compre-
hensive solution to the metamaterial design and characteriza-
tion, we implement the three probabilistic submodels using 
four deep neural networks, each with deliberately designed 
structure for its specific function. Specifically, they are feature 
extraction network, prediction network, recognition network, 
and reconstruction network as shown in Figure 1b. In order 
to fully exploit human experience on possible metamaterial 
geometries while avoiding intensive numerical calculations 
to collect data, the entire deep generative model is trained in 
an end-to-end manner with both labeled and unlabeled data 
employing a semi-supervised learning strategy. We show that, 
with the aid of unlabeled data, the model performance is obvi-
ously improved (Table S2, Supporting Information). This 
means the proposed model can efficiently learn from similar 
metamaterial patterns without corresponding optical response 
obtained by numerical simulations, which alleviate the burden 
in data acquisition compared with other supervised learning 
counterpart. More detailed implementation of the model with 

semi-supervised training strategy and network architecture can 
be found in Sections 4–6 of the Supporting Information.

To make a clear demonstration of the encoder–decoder 
configuration of our model, we first train the model for 
300 000 steps on three basic geometries, namely, cross, split 
ring, and h-shape. In Figure 2a, the evolution of the reproduced 
images is illustrated at certain training steps. Given the input 
images on the leftmost column, our model gradually produces 
more and more accurate reconstruction of the inputs as the 
training proceeds. Finally, at the last step when training ends, 
the test input images are faithfully reconstructed with high 
fidelity, indicating an accurate distribution of meta-atom pat-
terns described by the proposed model. Before evaluating the 
performance of the proposed deep generative model, we first 
check the structure of the latent space where the metamaterial 
design is encoded. Since the dimension of the latent space is 
20, we use t-distributed stochastic neighbor embedding (t-SNE) 
method to reduce the dimension to 2 for visualization purpose.

In Figure 2b we plot the 2D distribution of the encoded 
test data in three basic geometry groups. The three geometry 
groups are clearly separated into three clusters of cross, split 
ring, and h-shape, respectively. Without providing the corre-
sponding labels for the shapes, our model automatically learns 
to distinguish different shapes through the encoding–decoding 
training iterations on both labeled and unlabeled data. As 

Adv. Mater. 2019, 31, 1901111

Figure 1. a) The proposed deep generative model for metamaterial design and characterization. The metamaterial design and optical response are 
encoded into a latent space with a predefined prior distribution, from which the latent variables are sampled for inverse generation. The forward path 
is modeled as a deterministic prediction process. b) Architecture of the proposed deep generative model. Three submodels, the recognition model, 
the prediction model, and the generation model, constitute the complete architecture, which is implemented by four neural networks with deliberately 
designed structures for different purposes. The recognition model encodes the metamaterial pattern with its optical response into a low-dimensional 
latent space. The prediction model outputs a deterministic prediction of the optical response given the metamaterial design. The generation model 
accepts the optical response and the sampled latent variable to produce feasible metamaterial designs according to specific requirements.
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A VAE example II

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1901111 (3 of 9)
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the forward prediction of reflection spectra of metamaterial 
with given geometric pattern, and generation model for the 
inverse design process of metamaterial given required spectra. 
The detailed mathematical formulation of the deep generative 
model and loss objective for training can be found in Sections 2 
and 3 of the Supporting Information.

To realize the deep generative model that provides a compre-
hensive solution to the metamaterial design and characteriza-
tion, we implement the three probabilistic submodels using 
four deep neural networks, each with deliberately designed 
structure for its specific function. Specifically, they are feature 
extraction network, prediction network, recognition network, 
and reconstruction network as shown in Figure 1b. In order 
to fully exploit human experience on possible metamaterial 
geometries while avoiding intensive numerical calculations 
to collect data, the entire deep generative model is trained in 
an end-to-end manner with both labeled and unlabeled data 
employing a semi-supervised learning strategy. We show that, 
with the aid of unlabeled data, the model performance is obvi-
ously improved (Table S2, Supporting Information). This 
means the proposed model can efficiently learn from similar 
metamaterial patterns without corresponding optical response 
obtained by numerical simulations, which alleviate the burden 
in data acquisition compared with other supervised learning 
counterpart. More detailed implementation of the model with 

semi-supervised training strategy and network architecture can 
be found in Sections 4–6 of the Supporting Information.

To make a clear demonstration of the encoder–decoder 
configuration of our model, we first train the model for 
300 000 steps on three basic geometries, namely, cross, split 
ring, and h-shape. In Figure 2a, the evolution of the reproduced 
images is illustrated at certain training steps. Given the input 
images on the leftmost column, our model gradually produces 
more and more accurate reconstruction of the inputs as the 
training proceeds. Finally, at the last step when training ends, 
the test input images are faithfully reconstructed with high 
fidelity, indicating an accurate distribution of meta-atom pat-
terns described by the proposed model. Before evaluating the 
performance of the proposed deep generative model, we first 
check the structure of the latent space where the metamaterial 
design is encoded. Since the dimension of the latent space is 
20, we use t-distributed stochastic neighbor embedding (t-SNE) 
method to reduce the dimension to 2 for visualization purpose.

In Figure 2b we plot the 2D distribution of the encoded 
test data in three basic geometry groups. The three geometry 
groups are clearly separated into three clusters of cross, split 
ring, and h-shape, respectively. Without providing the corre-
sponding labels for the shapes, our model automatically learns 
to distinguish different shapes through the encoding–decoding 
training iterations on both labeled and unlabeled data. As 

Adv. Mater. 2019, 31, 1901111

Figure 1. a) The proposed deep generative model for metamaterial design and characterization. The metamaterial design and optical response are 
encoded into a latent space with a predefined prior distribution, from which the latent variables are sampled for inverse generation. The forward path 
is modeled as a deterministic prediction process. b) Architecture of the proposed deep generative model. Three submodels, the recognition model, 
the prediction model, and the generation model, constitute the complete architecture, which is implemented by four neural networks with deliberately 
designed structures for different purposes. The recognition model encodes the metamaterial pattern with its optical response into a low-dimensional 
latent space. The prediction model outputs a deterministic prediction of the optical response given the metamaterial design. The generation model 
accepts the optical response and the sampled latent variable to produce feasible metamaterial designs according to specific requirements.

Figure: A conditional VAE model for photonics design. Reprinted from [11].
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Challenges

Obtaining data efficiently.
Benchmark problems for performance testing.
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Thank you.
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