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Traditional methods for numerical solution of PDEs

Features of different methods

Finite element methods: rigorous error estimates, fair accuracy,
flexible for complex geometry, rich industrial applications. In en-
gineering, quadrilateral or hexahedral elements are preferred, and
the meshing procedure remains an issue because of the sensitivity
to mesh distortions;
Finite difference methods: easy to use on regular mesh, tricky on
imposing boundary conditions, stability issue;
Finite volume methods: suitable for conservation laws, naturally
leads to conserved quantities, hard to formulate high-order meth-
ods on unstructured meshes;
Spectral methods: highly accurate, but only for problems with suf-
ficient regularity and regular geometry;
Spectral elements: very high-order finite elements using spectral
bases in each element;
...
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Traditional methods for numerical solution of PDEs

Some new methods I

Discontinuous Galerkin methods: combines aspects from finite ele-
ments and finite volume methods. The continuity of interpolation
is weakly imposed via flux conditions. Artificial stabilization is
usually required;
Domain decomposition: converts the original problem to a set of
coupled problems on different subdomains, iteratively exchanges
information between shared interfaces, can simplify meshing and
increase local accuracy;
Meshless methods: uses global (rational) interpolation through scat-
tered data points. The numerical integration and stability condi-
tion remain challenging;
Isogeometric analysis: constructs interpolation using spline bases
in geometry representation, requires a set of industrial blocks to
work together;
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Traditional methods for numerical solution of PDEs

Some new methods II

AMORE/Overlapping paradigm: allows fast, automatic meshing
by overlapping some regular sub-meshes. The accuracy and effi-
ciency depend on the interpolation formulation and the implemen-
tation;

...

Neural networks can be used as a pure meshless method for general
PDEs on complex geometries. The numerical integration is effectively
replaced by Monte Carlo integration and mini-batch GD. Due to the
universal approximation power, all difficulties are left for the optimiza-
tion procedure.
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Machine learning approaches: Data-driven & Model-driven Data-driven approaches

Realtime fluid simulation1

Setting: Running time matters more than the physical exactness, e.g. in
computer games or interactive design.
Features are designed from traditional SPH (smoothed particle hydro-
dynamics) formulations. An example:

In SPH, the viscosity term for the i-th particle is

avisc
i =

µ

ρ0
∑

j
(vj − vi)∇2W(xj − xi).

Corresponding, the viscosity feature can be given by

Φvisc
X,R(xi) =

µ

ρ0
∑
j∈X

(vj − vi)ΩR(xj − xi).

Training data were obtained using some existing algorithm evaluated
on many randomly generated scenes.

1L Ladický et al. “Data-driven fluid simulations using regression forests”. ACM
Transactions on Graphics 34.6 (2015).
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Machine learning approaches: Data-driven & Model-driven Data-driven approaches

Other examples

In multiscale analysis, traditional approaches may be used in
micro scale to estimate the average material response2;
PointNet for learning fluid flow near irregular objects3;
Prediction for history-dependent material response using RNNs4.

Issues of data-driven approaches: generalization, and expensive offline
cost.

2S Saha et al. “Hierarchical deep learning neural network (HiDeNN): An artificial
intelligence (AI) framework for computational science and engineering”. Computer
Methods in Applied Mechanics and Engineering 373 (2021), 113452.

3A Kashefi, D Rempe, and LJ Guibas. A point-cloud deep learning framework for predic-
tion of fluid flow fields on irregular geometries. 2020. arXiv: 2010.09469 [cs.LG].

4C Wang, LY Xu, and JS Fan. “A general deep learning framework for history-
dependent response prediction based on UA-Seq2Seq model”. Computer Methods in
Applied Mechanics and Engineering 372 (2020), 113357.
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Machine learning approaches: Data-driven & Model-driven Model-driven approaches

Vanilla approach6

Lu = f , x ∈ Ω

Bu = g, x ∈ ∂Ω

u = u(x, βi)

Loss =
∫

Ω
‖Lu− f ‖2dV +

∫

∂Ω
‖Bu− g‖2dS

This was trained by a quasi-Newton method. The idea of deep Ritz
method5 was also mentioned briefly.

5W E and B Yu. “The deep Ritz method: A deep learning-based numerical algo-
rithm for solving variational problems”. Communications in Mathematics and Statistics
6.1 (2018), 1–12.

6MWMG Dissanayake and N Phan-Thien. “Neural-network-based approximations
for solving partial differential equations”. Communications in Numerical Methods in En-
gineering 10.3 (1994), 195–201.
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Machine learning approaches: Data-driven & Model-driven Model-driven approaches

Stochastic formulation7 I

Consider a semilinear parabolic PDE

∂u
∂t

(t, x) +
1
2

Tr
(

σσ>(t, x)(Hessx u)(t, x)
)
+∇u(t, x) · µ(t, x)

+ f
(

t, x, u(t, x), σ>(t, x)∇u(t, x)
)
= 0

with a terminal condition u(T, x) = g(x). It can be reformulated as the
following BSDE

u(t, Xt)− u(0, X0) =

−
∫ t

0
f (s, Xs, u(s, Xs), σ>(s, Xs)∇u(s, Xs))ds

+
∫ t

0
[∇u(s, Xs)]

>σ(s, Xs)dWs

7J Han, A Jentzen, and W E. “Solving high-dimensional partial differential equa-
tions using deep learning”. Proceedings of the National Academy of Sciences 115.34 (2018),
8505–8510.
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Machine learning approaches: Data-driven & Model-driven Model-driven approaches

Stochastic formulation II

where

Xt = ξ +
∫ t

0
µ(s, Xs)ds +

∫ t

0
σ(s, Xs)dWs

and Ws is a d-dimensional Brownian motion. The value of u at the ini-
tial position ξ and its derivatives are parameters to be optimized, along
with the parameters for approximating the mapping x 7→ σ>(t, x)∇u(t, x)
at each t = tn. The loss is given by Loss = E

[
|g(XtN )− u ({Xtn}, {Wtn}) |2

]
.

Here the Brownian motion naturally provides randomness in the SGD.
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A continuous formulation

Shallow neural network from a continuous viewpoint8

Consider the integral-transform based representation

f =
∫

Rn+2
aσ(w>x̃)π(da, dw)

where π is a probability distribution and the w can be understood as
the parameters in a 2-layer neural network. If the probability is given
by a particle discretization

π̂(a, w) =
1
m

m

∑
i=1

δ((a, w)− (ai, wi)),

the gradient flow leads to the continuous time GD dynamics of a 2-layer
neural network model.

8W E, C Ma, and L Wu. “Machine learning from a continuous viewpoint, I”. Science
China Mathematics 63.11 (2020), 2233–2266.
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A continuous formulation

What we may see from the continuous formulation

In low dimensions, the particle approximation may not be efficient. As-
sume sufficient regularity for f . Traditional approximations may be
used, e.g. spectral basis, and piecewise polynomials.

This integral transform is similar to the Ridgelet transform9. However,
the Ridgelet transform is adapted for high-dimensional intermittency
along hyperplanes. If singularity exists along a general manifold, or if
the singularity has low dimensions, the approximation should be mod-
ified.

Wavelet transform? Fourier transform?

9EJ Candès and DL Donoho. “Ridgelets: a key to higher-dimensional intermit-
tency?” Philosophical Transactions of the Royal Society A 357.1760 (1999), 2495–2509.
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What traditional methods can offer for NNs Reduced basis methods

When we have affine dependence I

Consider the weak statement

aµ(uµ, v) = f (v), ∀v ∈ H

where µ ∈ P is the parameter vector, and uµ ∈ H is the numerical
solution we are looking for. For each µi ∈ P , i ∈ [N], we can use finite
element methods to solve for a high fidelity solution uµi , which may be
called a snapshot. If

aµ(·, ·) = ∑
q

Θq(µ)a(q)(·, ·),

we say the bilinear form is affine in parameters.
After generating enough snapshots, greedy algorithms or POD can be
used to select a reduced (orthogonal) basis {v1, v2, . . . , vM}, M� N.
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What traditional methods can offer for NNs Reduced basis methods

When we have affine dependence II

For any new parameter vector µ, we solve the original weak problem

aµ(uµ, v) = f (v), ∀v ∈ H∗

in a new space H∗ = span{v1, v2, . . . , vM} with much reduced dimen-
sions. This leads to a linear system with much fewer DOFs. The calcu-
lation of most matrices can be performed offline and stored.
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What traditional methods can offer for NNs Reduced basis methods

Learning the projection

When we have affine dependence, the solution in reduced space is de-
termined by a Galerkin projection. However, the Galerkin projection
no longer saves computational effort for general nonlinear problems.10.

Procedures were proposed to approximate differential operators using
affine expansion in general non-affine cases.

Machine learning here comes to help. We simply need to learn a projec-
tion from high-fidelity solutions to the reduced space H∗.

10M Guo and JS Hesthaven. “Reduced order modeling for nonlinear structural anal-
ysis using Gaussian process regression”. Computer Methods in Applied Mechanics and
Engineering 341 (2018), 807–826.
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What traditional methods can offer for NNs Reduced basis methods

GPR numerical results I
M. Guo, J.S. Hesthaven / Comput. Methods Appl. Mech. Engrg. 341 (2018) 807–826 823

Fig. 8. Geometry and pressure loads for the twisting column.

Fig. 9. Configurations of the twisting column at different loading stages.

ensures much higher online efficiency, which better meets the demands of engineering applications. In the context of
structural analysis, the nonlinearities could result into some difficulties in the online solutions for the reduced models
in the conventional approach, then the accuracy of these reduced-order solutions may be unsatisfactory. We would like

Figure: A twisting column. Reprinted from [10].
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What traditional methods can offer for NNs Reduced basis methods

GPR numerical results II

824 M. Guo, J.S. Hesthaven / Comput. Methods Appl. Mech. Engrg. 341 (2018) 807–826

Fig. 10. (a) Regression results for the curve of displacement u X of the labeled node B versus pressure load µ1 = p; (b) Prediction of u X at node
B and its derivative with respect to µ1, both calculated from the GPR model trained by 28 selected samples.

Fig. 11. Regression results for the surface of displacement u X of the labeled node B versus µ1 and µ2.

to refer to [24], in which the online accuracy and efficiency are quantitatively compared between these two approaches
in a nonlinear example.

6. Conclusions

A non-intrusive RB method is proposed for the ROM of parametrized nonlinear structural problems. In the
framework of this method, an RB space is constructed offline by POD as the low-rank approximation to the space
spanned by a collection of full-order snapshots. Rather than the conventionally used Galerkin projection scheme, a
regression-based approach is adopted to determine the reduced-order solution for any desired new parameter value.
Based on the offline establishment of a GPR model between parameter values and projection coefficients, only direct
outputs from the model are required during the online stage to obtain the reduced-order solutions at new parameter
locations. Hence, the regression-based approach ensures a full decoupling between offline and online stages, and is
non-intrusive. With both the accuracy and the efficiency validated by numerical examples, the proposed RB method
is shown to be a powerful tool for solving parametrized nonlinear structural problems.

Figure: Regression results for the surface of displacement uX of the labeled
node B. Reprinted from [10]. (RB space of rank 6 generated from 25 snapshots;
Regressor trained by 40 data.)
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What traditional methods can offer for NNs Adaptive finite element analysis using machine learning

Adaptive finite element analysis

p-adaptivity: increasing the order of finite elements locally;
h-adaptivity: refining the mesh locally;
r-adaptivity: optimizing the positions of finite element nodes.
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What traditional methods can offer for NNs Adaptive finite element analysis using machine learning

Representing FEs using NNs11 I

Motivation: ReLU can be used to represent the piecewise linear basis of
linear elements.

1D example:

NI(x) =





x−xI−1
xI−xI−1

, xI−1 ≤ x ≤ xI ,
xI+1−x
xI+1−xI

, xI ≤ x ≤ xI+1,

0, elsewhere,

uh = ∑
I

NI(x)uI .

11L Zhang et al. “Hierarchical deep-learning neural networks: finite elements and
beyond”. Computational Mechanics (2020).
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What traditional methods can offer for NNs Adaptive finite element analysis using machine learning

Representing FEs using NNs II

Figure: 1D linear shape function at xI . Reprinted from [11].
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What traditional methods can offer for NNs Adaptive finite element analysis using machine learning

Representing FEs using NNs III

Figure: Neural network representation of the 1D linear shape function and
interpolation function. Reprinted from [11].
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What traditional methods can offer for NNs Adaptive finite element analysis using machine learning

Representing FEs using NNs IV

Figure: Neural network representation of the global interpolation. Reprinted
from [11].
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What traditional methods can offer for NNs Adaptive finite element analysis using machine learning

Adaptive finite element analysis

By adding quadratic activation function and inverse activation func-
tion, any rational interpolation can be represented using structured
DNNs; ( f1 f2 = 1

2

(
( f1 + f2)2 − f 2

1 − f2
)
...)

Solving PDEs using FEM is equivalent to the training of the weights
at the last hidden layer;
Optimizing the loss function (energy) leads to optimization of the
nodal positions (r-adaptivity).
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What traditional methods can offer for NNs Adaptive finite element analysis using machine learning

Numerical results I

Figure: A 1D example. Reprinted from [11].

Junbin Huang (Peking University) ML for PDEs December 16, 2020 24 / 43



What traditional methods can offer for NNs Adaptive finite element analysis using machine learning

Numerical results II

Figure: The exact solution. Reprinted from [11].
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What traditional methods can offer for NNs Adaptive finite element analysis using machine learning

Numerical results III

Figure: The numerical solution. Reprinted from [11].
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What traditional methods can offer for NNs Adaptive finite element analysis using machine learning

Numerical results IV

Figure: A 2D example. Reprinted from [11].
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What traditional methods can offer for NNs Adaptive finite element analysis using machine learning

Numerical results V

Figure: The adaptive meshes. Reprinted from [11].
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What traditional methods can offer for NNs Phase shift NNs & Multiscale NNs

Frequency principle12

Theorem
Consider a DNN of one hidden layer with a tanh activation function. For any
frequencies k1 and k2 such that | f̂ (k1)| > 0, | f̂ (k2)| > 0, and |k2| > |k1| > 0,
there exist positive constants c and C such that for sufficiently small δ, we have

µ
({

W0 :
∣∣∣ ∂L(k1)

∂θj

∣∣∣ >
∣∣∣ ∂L(k2)

∂θj

∣∣∣ ∀j
}
∩ Bδ

)

µ(Bδ)
> 1− C exp(−c/δ)

where Bδ is a ball with radius δ centered at the origin of the W0-parameter
space and µ(·) is the Lebesgue measure.

12ZQJ Xu et al. “Frequency principle: Fourier analysis sheds light on deep neural
networks”. Communications in Computational Physics 28.5 (2020), 1746–1767.
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What traditional methods can offer for NNs Phase shift NNs & Multiscale NNs

Decomposition in the frequency domain

Assume supp f̂ ⊂ [−M∆k, M∆k]. We write

f̂ (k) = ∑
j

f̂ j(k)

where supp f̂ j ⊂ {k : (j− 1/2)∆k ≤ k ≤ (j + 1/2)∆k} for phase shift
NNs13, or supp f̂ j ⊂ {k : (j− 1)∆k ≤ |k| ≤ j∆k} for multiscale NNs14.

13W Cai, X Li, and L Liu. “A phase shift deep neural network for high frequency
approximation and wave problems”. SIAM Journal on Scientific Computing 42.5 (2020),
A3285–A3312.

14Z Liu, W Cai, and ZQJ Xu. “Multi-scale deep neural network (MscaleDNN) for
solving Poisson-Boltzmann equation in complex domains”. Communications in Compu-
tational Physics 28.5 (2020), 1970–2001.
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What traditional methods can offer for NNs Phase shift NNs & Multiscale NNs

Phase shift NNs

Correspondingly, we have

f (x) = ∑
j

f j(x)

where f j(x) = F−1[ f̂ j](x). Due to the frequency principle, f shift
j (x) =

e−ij∆kx f j(x) can be learned quickly.

A parallel procedure: 1) conduct frequency decomposition; 2) generate
training data for f shift

j (x); 3) train a NN Tj(x) approximate f shift
j (x); 4)

f (x) ≈ ∑j eij∆kxTj(x).
A coupled procedure: directly consider the NN given by T(x) = ∑j eiωjx

Tj(x).

It can be shown that if the weights in input layer are small, the loss
functions of the two procedures are approximately equivalent13.
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What traditional methods can offer for NNs Phase shift NNs & Multiscale NNs

Multiscale NNs I

We consider scaling each f̂ j by f̂ (scale)
j = f̂ j(αjk), where αj > 1. Con-

sequently, f (scale)
j (x) ∝ f j

(
1
αj

x
)

, which can be learned quickly if αj is
large. This motivates the NN structure f (x) ≈ ∑j Tj(αjx).

It is also found that activation functions with compact support perform
better for MscaleDNNs.
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What traditional methods can offer for NNs Phase shift NNs & Multiscale NNs

Multiscale NNs II

1976 Z. Liu, W. Cai and Z.-Q. J. Xu / Commun. Comput. Phys., 28 (2020), pp. 1970-2001

(a) sReLU (b) φ

(a) MscaleDNN-1 (b) MscaleDNN-2

x+b), where w, x, b are weight, input, and bias parameters, respectively. A complete
MscaleDNNs takes the following form

fθ(x)=W
[L−1]σ◦(···(W

[1]σ◦(W
[0] (K#x)+b

[0])+b
[1])···)+b

[L−1], (3.4)

where x∈Rd, W [l] ∈Rml+1×ml , ml is the neuron number of l-th hidden layer, m0 =d, b[l] ∈
Rml+1, σ is a scalar function and “◦” means entry-wise operation, # is the Hadamard
product and

K =(a1,a1,··· ,a1︸ ︷︷ ︸
1st part

,a2,a2,··· ,a2︸ ︷︷ ︸
2nd part

,a3,··· ,ai−1,ai,ai,··· ,ai︸ ︷︷ ︸
ith part

,··· ,aN ,aN ··· ,aN︸ ︷︷ ︸
Nth part

)T, (3.5)

where ai = i or ai =2i−1.
We refer to this structure as Multi-scale DNN-1 (MscaleDNN-1) of the form in Eq. (3.4),

as depicted in Fig. 3(a).

Figure: Two MscaleDNN structures. Reprinted from [14].
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What traditional methods can offer for NNs Phase shift NNs & Multiscale NNs

Multiscale NNs III

Consider the following Poisson-Boltzmann equation

−∇(ε(x)∇u(x)) + κ(x)u(x) = f (x), x ∈ Ω = [−1, 1]3,

and

f (x) = (µ2
1 + µ2

2 + µ2
3 + x2

1 + 2x2
2 + 3x2

3) sin(µ1x1) sin(µ2x2) sin(µ3x3),

κ(x) = (x2
1 + 2x2

2 + 3x2
3),

where µ1 = 15, µ2 = 20, and µ3 = 25.
Two networks are used: 1) a fully-connected DNN with size 1-900-900-
900-1 (normal); 2) a MscaleDNN-2 with six subnetworks with size 1-
150-150-150-1 and scale coefficients 1,2,4,8,16,32 (Mscale).
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What traditional methods can offer for NNs Phase shift NNs & Multiscale NNs

Multiscale NNs IV
1992 Z. Liu, W. Cai and Z.-Q. J. Xu / Commun. Comput. Phys., 28 (2020), pp. 1970-2001

The boundary condition is given by the exact solution u(x). We choose µ1 = 15, µ2 = 20,
µ3=25. In each training epoch, we sample 5000 points inside the domain and 4000 points
from the boundary. We compare the following two DNN structures:

1. a fully-connected DNN with size 1-900-900-900-1 (normal);

2. a MscaleDNN-2 with six subnetworks with size 1-150-150-150-1 and scale coeffi-
cients {1,2,4,8,16,32} (Mscale).

As shown in Fig. 22, during the training process, the error of the MscaleDNN decays
significantly, while the error of the normal DNN almost keeps unchanged. Therefore,
MscaleDNN solves the problem much faster with a much better accuracy.

6.2.2 Geometric singularities

In this subsection, we consider the PB equation (4.3) in a domain with geometric singu-
larities and jump condition on interior interfaces, which arises from the simulation of
solvation of bio-molecules. Consider an open bounded domain Ω1 ⊂ R3, which divides
R3 into two disjoint open subdomains by the surface Γ=∂Ω1. Ω1 is identified as the bio-
molecule, and Ω2 =R3\Ω1 is the solvent region. The exact solution u(x) is also divided
into two parts, u1(x) is defined in Ω1 and u2(x) in Ω2. The solution will also satisfy the
transmission condition (4.4), (4.5) along the interface Γ and a decaying condition at the
∞, i.e.

lim
|x|→∞

u2(x)=0. (6.11)

To deal with the unbounded domain, we truncate the solution domain to a large ball or
cube, denoted by Ω satisfying Ω1 ⊂ Ω and we re-define Ω2 = Ω\Ω1 and set an approxi-
mate condition u2 =0 on the boundary of the ball (Fig. 23 (left)) and such a crude bound-
ary condition will surely introduce error to the PDEs solution. Higher order boundary
conditions have been studied extensively, and as we are more interested in the perfor-
mance of the DNNs near the interior interface, we will not ponder over this issue here.

Figure: Training errors for the variable coefficient PB equation. Reprinted from
[14].
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What traditional methods can offer for NNs Extended PINNs

Domain decomposition

XPINN concepts15:
Subdomains: Ω =

⋃
i Ωi (non-overlapping);

Interfaces: common boundary of two subdomains;
Sub-net: Individual PINN Ti on each subdomain Ωi with its own
hyperparameters;
Interface conditions: problem dependent.

Global representation: u(x) = ∑i Ti(x)IΩi(x) and averaged on inter-
faces.

Loss function for each subdomain...
15AD Jagtap and GE Karniadakis. “Extended physics-informed neural networks

(XPINNs): A generalized space-time domain decomposition based deep learning
framework for nonlinear partial differential equations”. Communications in Computa-
tional Physics 28.5 (2020), 2002–2041.
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What traditional methods can offer for NNs Extended PINNs

Numerical results I
2020 A. D. Jagtap and G. E. Karniadakis / Commun. Comput. Phys., 28 (2020), pp. 2002-2041

Figure 6: Three irregular subdomains for two-dimensional Poisson’s equation. Red stars, yellow circles and
green squares correspond to subdomain 1, 2 and 3, respectively. The training data point along the boundary
are shown by black cross and the interface points are shown by the blue squares.

r1 =0.5+0.18 sin(3θ)+0.08 cos(2θ)+0.2 cos(5θ);

r2 =0.34+0.04 sin(5θ)+0.18 cos(3θ)+0.1 cos(6θ);

and the corresponding interface points are obtained as (x1,y1)= (−0.4+r1cos(θ),−0.4+
r1sin(θ)) and (x2,y2)=(0.5+r2 cos(θ),0.6+r2sin(θ)), respectively. For the Poisson’s equa-
tion, the residual term is defined as F(u) := ∆u− f (x,y). Table 3 gives the details of net-
work architecture used in the three subdomains. The activation function is hyperbolic
tangent and the learning rate is 0.0006. The number of interface points is 100 on both
interfaces and their locations are shown in Fig. 6. The values of Wuq =20,WFq =1,WIFq

=1

and WIq =20 and 100 interface points are used on both interfaces. The number of bound-
ary training data points is 200. Both interface and boundary training data points are
chosen randomly as shown in Fig. 6. Fig. 7 (top row) shows the exact solution, predicted
solution and the absolute point-wise error in the whole domain, and the white line shows
the position of arbitrary internal subdomains. XPINN can stitch these arbitrarily shaped
subdomains together very well, which can be seen from the point-wise error plot. By
increasing the number of interface points, the interface imprinting effect can be reduced
significantly. The bottom figure shows the loss function variation in each subdomain up
to 25k iterations.

Table 3: Two-dimensional Poisson’s equation: Neural network architecture in each subdomain.

Subdomain number 1 2 3

# Layers 2 4 3

# Neurons 30 20 25

# Residual points 7000 1800 1200

Figure: Solving 2D Poisson problem using 3 subdomains. Reprinted from [15].
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What traditional methods can offer for NNs Extended PINNs

Numerical results II

A. D. Jagtap and G. E. Karniadakis / Commun. Comput. Phys., 28 (2020), pp. 2002-2041 2021

Figure 7: Two-dimensional Poisson’s equation: Exact, predicted solutions and the point-wise error (top row,
left to right). The white line shows the position of internal subdomains. The variation of loss functions with
the number of iterations for three subdomains is shown in the bottom figure.

4.2.1 Effect of depth and width of the network

The network hyperparameters such as depth, width, and activation function play a cru-
cial role in the convergence of the loss function. Due to high expressivity of a deep neural
network, it can be shown that with increase in the depth, the network can approximate
very complex solutions. To analyze the performance of the proposed XPINN method,
we shall discuss the effect of depth and width of the network on the predictive accuracy
of the solution of Poisson’s problem. In this study, we keep all other hyperparameters
fixed and their values are same as before. We have chosen different values for width and
depth, which is fixed in all subdomains, and for each combination we perform the five
different runs up to 25k iterations corresponding to different initialization of weights and
biases. Table 4 shows the average relative L2 error in the XPINN solution over the whole
domain with varying width and depth of the neural network. We observe that by increas-
ing the depth simultaneously with the width of the network (which in turn increases the
expressivity of the network) the predictive accuracy of the solution increases.

Figure: Exact and numerical solutions. Reprinted from [15].
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