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Traditional methods for numerical solution of PDEs

Features of different methods

@ Finite element methods: rigorous error estimates, fair accuracy,
flexible for complex geometry, rich industrial applications. In en-
gineering, quadrilateral or hexahedral elements are preferred, and
the meshing procedure remains an issue because of the sensitivity
to mesh distortions;

@ Finite difference methods: easy to use on regular mesh, tricky on
imposing boundary conditions, stability issue;

@ Finite volume methods: suitable for conservation laws, naturally
leads to conserved quantities, hard to formulate high-order meth-
ods on unstructured meshes;

@ Spectral methods: highly accurate, but only for problems with suf-
ficient regularity and regular geometry;

@ Spectral elements: very high-order finite elements using spectral
bases in each element;
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Traditional methods for numerical solution of PDEs

Some new methods |

@ Discontinuous Galerkin methods: combines aspects from finite ele-
ments and finite volume methods. The continuity of interpolation
is weakly imposed via flux conditions. Artificial stabilization is
usually required;

@ Domain decomposition: converts the original problem to a set of
coupled problems on different subdomains, iteratively exchanges
information between shared interfaces, can simplify meshing and
increase local accuracy;

@ Meshless methods: uses global (rational) interpolation through scat-
tered data points. The numerical integration and stability condi-
tion remain challenging;

@ Isogeometric analysis: constructs interpolation using spline bases
in geometry representation, requires a set of industrial blocks to
work together;
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Traditional methods for numerical solution of PDEs

Some new methods II

o AMORE/Overlapping paradigm: allows fast, automatic meshing
by overlapping some regular sub-meshes. The accuracy and effi-
ciency depend on the interpolation formulation and the implemen-
tation;

Neural networks can be used as a pure meshless method for general
PDEs on complex geometries. The numerical integration is effectively
replaced by Monte Carlo integration and mini-batch GD. Due to the
universal approximation power, all difficulties are left for the optimiza-
tion procedure.
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Machine learning approaches: Data-driven & Model-driven

Data-driven approaches

Realtime fluid simulation?

Setting: Running time matters more than the physical exactness, e.g. in
computer games or interactive design.

Features are designed from traditional SPH (smoothed particle hydro-
dynamics) formulations. An example:

@ In SPH, the viscosity term for the i-th particle is
a)ise = . Z —v;)V? W(x; — x;).
@ Corresponding, the Viscosity feature can be given by

‘>’<1‘°j§ V Z QR(X] - Xz)
]GX

Training data were obtained using some existing algorithm evaluated
on many randomly generated scenes.

11, Ladicky et al. “Data-driven fluid simulations using regression forests”. ACM
Transactions on Graphics 34.6 (2015).
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Machine learning approaches: Data-driven & Model-driven [EEBE(EREIsIYSIIE eI ekl e

Other examples

@ In multiscale analysis, traditional approaches may be used in
micro scale to estimate the average material response?;

@ PointNet for learning fluid flow near irregular objects?;

e Prediction for history-dependent material response using RNNs*.

Issues of data-driven approaches: generalization, and expensive offline
cost.

2S Saha et al. “Hierarchical deep learning neural network (HiDeNN): An artificial
intelligence (AI) framework for computational science and engineering”. Computer
Methods in Applied Mechanics and Engineering 373 (2021), 113452.

3 A Kashefi, D Rempe, and L] Guibas. A point-cloud deep learning framework for predic-
tion of fluid flow fields on irregular geometries. 2020. arXiv: 2010.09469 [cs.LG].

4C Wang, LY Xu, and JS Fan. “A general deep learning framework for history-
dependent response prediction based on UA-Seq2Seq model”. Computer Methods in
Applied Mechanics and Engineering 372 (2020), 113357.
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Machine learning approaches: Data-driven & Model-driven [Vl lSIEeIsAS Yol (oETal ]

Vanilla approach®

Lu=f, xeQ
Bu=g, x¢&oQ
u=u(x,pB)
L :/ﬁ— 24V / Bu — ¢||2ds
0ss QH u—fl*dV + aQH u—gl|

This was trained by a quasi-Newton method. The idea of deep Ritz
method® was also mentioned briefly.

SW E and B Yu. “The deep Ritz method: A deep learning-based numerical algo-
rithm for solving variational problems”. Communications in Mathematics and Statistics
6.1 (2018), 1-12.

®MWMG Dissanayake and N Phan-Thien. “Neural-network-based approximations
for solving partial differential equations”. Communications in Numerical Methods in En-
gineering 10.3 (1994), 195-201.
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Machine learning approaches: Data-driven & Model-driven

Model-driven approaches

Stochastic formulation” I

Consider a semilinear parabolic PDE

Z;l(t,x) + %Tr <(rch(t,x)(Hessx u)(t,x)) + Vu(t, x) - u(t, x)

+f (t, x,u(t,x),gT(t,x)Vu(t,x)> —0

with a terminal condition u(T, x) = g(x). It can be reformulated as the
following BSDE

u(t, Xt) — M(OI XO) =
_/Otf(SIXSIu(S/XS),UT(S, XS)VM(S,XS))dS

+ /t[Vu(s, X)) "o (s, Xs)dWs
0

7] Han, A Jentzen, and W E. “Solving high-dimensional partial differential equa-

tions using deep learning”. Proceedings of the National Academy of Sciences 115.34 (2018),
8505-8510.
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Machine learning approaches: Data-driven & Model-driven [Vl lSIEeIsAS Yol (oETal ]

Stochastic formulation 11

where t t
X =€+/0 ;t(s,Xs)dst/0 (s, Xs)dWs

and W; is a d-dimensional Brownian motion. The value of u at the ini-
tial position ¢ and its derivatives are parameters to be optimized, along
with the parameters for approximating the mapping x — o' (¢, x)Vu(t, x)
ateacht = t,,. Thelossis givenby Loss = E [|¢(X:,) — u ({Xs, }, {Wi, }) |

Here the Brownian motion naturally provides randomness in the SGD.
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A continuous formulation

Shallow neural network from a continuous Viewpoint8

Consider the integral-transform based representation

— Tg
f= - ac(w' X)7t(da, dw)
where 71 is a probability distribution and the w can be understood as

the parameters in a 2-layer neural network. If the probability is given
by a particle discretization

3

fr(a,w) = 5(((1,W) - (ailwi))l

1
m

Il
—_

the gradient flow leads to the continuous time GD dynamics of a 2-layer
neural network model.

8W E, C Ma, and L Wu. “Machine learning from a continuous viewpoint, I”. Science
China Mathematics 63.11 (2020), 2233-2266.
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A continuous formulation

What we may see from the continuous formulation

In low dimensions, the particle approximation may not be efficient. As-
sume sufficient regularity for f. Traditional approximations may be
used, e.g. spectral basis, and piecewise polynomials.

This integral transform is similar to the Ridgelet transform’. However,
the Ridgelet transform is adapted for high-dimensional intermittency
along hyperplanes. If singularity exists along a general manifold, or if
the singularity has low dimensions, the approximation should be mod-
ified.

Wavelet transform? Fourier transform?

9E] Candeés and DL Donoho. “Ridgelets: a key to higher-dimensional intermit-
tency?” Philosophical Transactions of the Royal Society A 357.1760 (999),2495=250%
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What traditional methods can offer for NNs Reduced basis methods

When we have affine dependence I

Consider the weak statement
at(ut,v) = f(v), YveH

where i € P is the parameter vector, and u* € H is the numerical
solution we are looking for. For each y; € P, i € [N], we can use finite
element methods to solve for a high fidelity solution u"/, which may be
called a snapshot. If

a'(.,) = ZG)q(V)a(q)('/')/
q

we say the bilinear form is affine in parameters.
After generating enough snapshots, greedy algorithms or POD can be
used to select a reduced (orthogonal) basis {v1,v2, ..., oM}, M < N.
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What traditional methods can offer for NNs Reduced basis methods

When we have affine dependence II

For any new parameter vector y, we solve the original weak problem
at(ut,v) = f(v), Vve H*

in a new space H* = span{vy,vy,...,vpm} with much reduced dimen-
sions. This leads to a linear system with much fewer DOFs. The calcu-
lation of most matrices can be performed offline and stored.
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What traditional methods can offer for NNs Reduced basis methods

Learning the projection

When we have affine dependence, the solution in reduced space is de-
termined by a Galerkin projection. However, the Galerkin projection
no longer saves computational effort for general nonlinear problems.'°.

Procedures were proposed to approximate differential operators using
affine expansion in general non-affine cases.

Machine learning here comes to help. We simply need to learn a projec-
tion from high-fidelity solutions to the reduced space H*.

10M Guo and JS Hesthaven. “Reduced order modeling for nonlinear structural anal-
ysis using Gaussian process regression”. Computer Methods in Applied Mechanics and
Engineering 341 (2018), 807-826.
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Reduced basis methods
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A EEIHTOEI B T ER N R SR WININEIl  Reduced basis methods

GPR numerical results 11

I ):cdiction
I [ower bound of 95% confidence level
ie upper bound of 95% confidence level
s| +  parameter pool
05 L@ 0 +| o first 40 sclected

Displacement uy of the labeled node B

" . Hy

Figure: Regression results for the surface of displacement ux of the labeled
node B. Reprinted from [10]. (RB space of rank 6 generated from 25 snapshots;
Regressor trained by 40 data.)
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Adaptive finite element analysis

@ p-adaptivity: increasing the order of finite elements locally;
@ h-adaptivity: refining the mesh locally;
e r-adaptivity: optimizing the positions of finite element nodes.
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Adaptive finite element analysis using machine learning

What traditional methods can offer for NNs

Representing FEs using NNs!! I

Motivation: ReLU can be used to represent the piecewise linear basis of

linear elements.

1D example:
X—X1—
T xp-1 < x < xp,
— Xi41—X
Ni(x) = T xp < x < Xpya,
0, elsewhere,

u =Y Ny(x)u;.
1

UL Zhang et al. “Hierarchical deep-learning neural networks: finite elements and

beyond”. Computational Mechanics (2020).
ML for PDEs December 16, 2020 19/43
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MBI LISEI BT e ERE T R SR UININEI  Adaptive finite element analysis using machine learning

Representing FEs using NNs II

1 1 I
! 1
1 1
1 _— 1
1 _— 1
H 1
x x *
X1 Xy X1 X1 Xp-1 X X1 x Xio1 Xpi
Shape function Shape function Global Shape Constant
from left side of x; from right side of x; function at x;

Figure: 1D linear shape function at xj. Reprinted from [11].
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MBI LISEI BT e ERE T R SR UININEI  Adaptive finite element analysis using machine learning

Representing FEs using NNs III

bl =x b, =1 Wi, =1

) 45 _
wif, =1 Wt =

(a) DNN-based 1D shape function (b) DNN-based 1D interpolation function

Figure: Neural network representation of the 1D linear shape function and
interpolation function. Reprinted from [11].
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MBI LISEI BT e ERE T R SR UININEI  Adaptive finite element analysis using machine learning

Representing FEs using NNs IV

X1 Xz o Xpe1 X1 Xpp1 vt Xmp-1 Xmp

(a) 1D mesh of the initial nodal configuration.

Input layer

Hidden layer 1~3
NR

Output layer

(b) Assembly of the DNNs for the 1D mesh of np nodes

Figure: Neural network representation of the global interpolation. Reprinted
from [11].
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Adaptive finite element analysis

@ By adding quadratic activation function and inverse activation func-
tion, any rational interpolation can be represented using structured
DNNs; (fifa = 3 ((fi+ f2)? = ff = fo)-)

@ Solving PDEs using FEM is equivalent to the training of the weights
at the last hidden layer;

@ Optimizing the loss function (energy) leads to optimization of the
nodal positions (r-adaptivity).
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Numerical results I

Figure: A 1D example. Reprinted from [11].
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MBI LISEI BT e ERE T R SR UININEI  Adaptive finite element analysis using machine learning

Numerical results II

0.012 15
0.01 10
% 0.008 s
°E7 0.006 2
i‘é “ 0
2 0004
o
0.002 -5
0 - - -10
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
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(a) (b) ()
Figure: The exact solution. Reprinted from [11].
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MALEIRETE GG EIR I G ER RIS R GENNCIN  Adaptive finite element analysis using machine learning

Numerical results III

0.015
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Nodal position

Figure: The numerical solution. Reprinted from [11].
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AALEIRETI GG EIR I I ER RIS R GENNCI  Adaptive finite element analysis using machine learning

Numerical results IV

: 20
V
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Figure: A 2D example. Reprinted from [11].
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Numerical results V

Adaptive 40 % 20
mesh
(@) (b)
60 x 30 100 x 50

()]

(d)

Figure: The adaptive meshes. Reprinted from [11].
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What traditional methods can offer for NNs Phase shift NNs & Multiscale NNs

Frequency principle!

Theorem

Consider a DNN of one hidden layer with a tanh activation function. For any
frequencies ki and ky such that | f (k1)| > 0, |f(k2)| > 0, and |ka| > |k1| > 0,
there exist positive constants c and C such that for sufficiently small 6, we have

0. [oLtk) :
p({we |25 y;J) v} N Bs) 1 Coxp(oc/s)

aL( kz

where Bs is a ball with radius & centered at the origin of the W -parameter
space and y(-) is the Lebesque measure.

v

127QJ Xu et al. “Frequency principle: Fourier analysis sheds light on deep neural
networks”. Communications in Computational Physics 28.5 (2020), 4746-1767.
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What traditional methods can offer for NNs Phase shift NNs & Multiscale NNs

Decomposition in the frequency domain

Assume supp f C [—MAk, MAk]. We write
706 = Y50
J

where suppfj C{k: (j—1/2)Ak <k < (j+ 1/2)Ak} for phase shift
NNs'3, or suppfj C {k: (j —1)Ak < |k| < jAk} for multiscale NNs'*.

BW Cai, X Li, and L Liu. “A phase shift deep neural network for high frequency
approximation and wave problems”. SIAM Journal on Scientific Computing 42.5 (2020),
A3285-A3312.

147 Liu, W Cai, and ZQJ Xu. “Multi-scale deep neural network (MscaleDNN) for
solving Poisson-Boltzmann equation in complex domains”. Communications in Compui-
tational Physics 28.5 (2020), 1970-2001.
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What traditional methods can offer for NNs Phase shift NNs & Multiscale NNs

Phase shift NNs

Correspondingly, we have

fx) = L fi(x)
]

where f;(x) = F~![f;](x). Due to the frequency principle, f]-Shift(x) =
e~ Ik £(x) can be learned quickly.

A parallel procedure: 1) conduct frequency decomposition; 2) generate
training data for ffhift(x) ; 3) train a NN T;(x) approximate ijhift(x); 4)
f(x) = ;e T (x).

A coupled procedure: directly consider the NN givenby T(x) = }; el
Tj(x )

It can be shown that if the weights in input layer are small, the loss
functions of the two procedures are approximately equivalent!3.
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What traditional methods can offer for NNs Phase shift NNs & Multiscale NNs

Multiscale NNis |

We consider scaling each f; by fj(scale) = fj(ajk), where a; > 1. Con-

sequently, f].(scale)

large. This motivates the NN structure f(x) ~ }; Tj(a;x).

(x) « f; (%x), which can be learned quickly if &; is

It is also found that activation functions with compact support perform
better for MscaleDNNs.
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What traditional methods can offer for NNs Phase shift NNs & Multiscale NNs

Multiscale NNs II

o
L2 O ®. ° .
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(a) MscaleDNN-1 (b) MscaleDNN-2

Figure: Two MscaleDNN structures. Reprinted from [14].
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What traditional methods can offer for NNs Phase shift NNs & Multiscale NNs

Multiscale NN 111

Consider the following Poisson-Boltzmann equation
—V(e(x)Vu(x)) +x(x)u(x) = f(x), x € Q= [-1,1]%,
and
F(x) = (i + 13 + 3 + 2] + 203 + 3x3) sin(p121) sin(p22) sin(p33),

k(x) = (x% + 2x§ + 3x§),

where y1 =15, yp = 20, and p3 = 25.

Two networks are used: 1) a fully-connected DNN with size 1-900-900-
900-1 (normal); 2) a MscaleDNN-2 with six subnetworks with size 1-
150-150-150-1 and scale coefficients 1,2,4,8,16,32 (Mscale).
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M E ORI B T ERE R S WININEIll  Phase shift NNs & Multiscale NNs

Multiscale NNs IV

2x 1071
s 107
o
-2
6x10 —— normal
——— Mscale
4% 1072

0 1000 2000 3000 4000 5000
epoch

Figure: Training errors for the variable coefficient PB equation. Reprinted from
[14].
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What traditional methods can offer for NNs Extended PINNs

Domain decomposition

XPINN concepts®:
@ Subdomains: () = |J; (); (non-overlapping);
@ Interfaces: common boundary of two subdomains;

@ Sub-net: Individual PINN T; on each subdomain (); with its own
hyperparameters;

o Interface conditions: problem dependent.

Global representation: u(x) = Y; Ti(x)In,(x) and averaged on inter-
faces.

Loss function for each subdomain...

5AD Jagtap and GE Karniadakis. “Extended physics-informed neural networks
(XPINNSs): A generalized space-time domain decomposition based deep learning
framework for nonlinear partial differential equations”. Communications in Computa-
tional Physics 28.5 (2020), 2002-2041.
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What traditional methods can offer for NNs Extended PINNs

Numerical results I
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What traditional methods can offer for NNs Extended PINNs

Numerical results II
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Figure: Exact and numerical solutions. Reprinted from [15].
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Thank you.
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